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Classical ergodic theory was built on s-algebras. The aim of this paper is to
prove the individual ergodic theorem on more general structures—on product
MV algebras.

1. INTRODUCTION

The individual ergodic theorem, well known from classical ergodic
theory [9], has been proved on a dynamical system (V , 6, P, T ), where V
is a nonempty set, 6 is a s-algebra on V , P is a measure on 6, and T is a
measure-preserving transformation.

This theorem was later solved on more general structures, for example,
on fuzzy quantum loqics [10] and on D-posets [4]. This paper deals with the
individual ergodic theorem on product MV algebras [3, 8].

2. PRELIMINARIES

MV algebras, introduced by Chang [1], are many-valued analogues of
a two-valued logic. An MV algebra is a nonempty set } with two constant
elements 0} and 1} (0} Þ 1} ), with a binary operation % and a unary
operation ∗ such that, for all a, b, c P }, we have:

[MV1] a % b 5 b % a (commutativity).
[MV2] (a % b) % c 5 a % (b % c) (associativity).
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[MV3] a % 0} 5 a.
[MV4] a % 1} 5 1}.
[MV5] (a*)* 5 a.
[MV6] a % a* 5 1}.
[MV7] 0*} 5 1}.
[MV8] (a* % b)* % b 5 (a % b*)* % a.

The lattice operations ∨ and ∧ can be defined in any MV algebra by

a ~ b :5 (a* % b)* % b

a ` b :5 (a* ~ b*)*, a, b, P }

If, for a, b P }, we define

a # b ⇔ a 5 a ` b

then # is a partial order on } and the MV algebra is a distributive lattice
with respect to the operations ∨ and ∧. We recall that a # b iff b % a* 5
1}. We can define the binary operations ( and 2 as follows [2]:

a ( b :5 (a* % b*)*

a 2 b :5 (a* % b)*, a, b P }

An MV algebra } is called an MV s-algebra if each countable sequence
of elements from } has the supremum in }. One of the important Mundici
results [7] says that any MV algebra can be represented by a commutative
l-group (&, 1, 0, #) with a strong unit u, i.e., for any a P &, there exists
an integer n $ 1 such that a # nu. In any MV algebra }, we can introduce
a partial binary operation 1 defined iff a # b* via

a 1 b :5 a % b

A product MV algebra [8] is an algebraic system (}, %, ?, ∗, 1, 0), where
(}, %, ∗, 1, 0) is an MV algebra and ? is a binary operation satisfying
following conditions:

[P1] 1} ? 1} 5 1}.
[P2] The operation ? is commutative and associative.
[P3] If a 1 b # 1}, then c ? (a 1 b) 5 c ? a 1 c ? b, a, b, c P }.
[P4] If an ' 0, bn ' 0, then an ? bn ' 0.

An observable is a mapping x: @(R) → } such that x(R) 5 1}, x(A ø
B) 5 x(A) 1 x(B) whenever A ù B 5 0⁄ and x(An) ; x(A) whenever An ; A.

A state is a mapping m: } → ^0, 1& such that m(1} ) 5 1, m(a % b)
5 m(a) 1 m(b) whenever a % b* and m(a) 5 limn→` m(an) whenever an

; a.
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The mapping mx: @(R) → ^0, 1& defined by the formula mx(A) 5 m(x(A))
is a probability measure [6]. An observable x is an integrable observable
[10] if the integral *R t dmx(t) exists. In this case the mean value of the
observable x is defined via E(x) 5 *R t dmx(t).

Let x, y: @(R) → } be two observables. The joint observable [8] of the
observables x, y is a mapping h: @(R2) → } satisfying following conditions:

[JO1] h(R2) 5 1.
[JO2] If A ù B 5 0⁄ , then h(A ø B) 5 h(A) 1 h(B).
[JO3] If An ; A, then h(An) ; h(A).
[JO4] h(C 3 D) 5 x(C ) ? y(D), C, D P @(R).

If } is a s-complete, weakly s-distributive product MV algebra [i.e.,
every bounded countable subset of } has the supremum and for any bounded
double sequence (ai,j )i,j , } such that for ai,j ' 0 ( j → `, i 5 1, 2, . . .)
it holds that ∧fPN

N ∨`
i51 aif(i) 5 0], then for any observables x, y there exists

their joint observable [8]. We can also generalize this result.
Let J , N, J 5 {i1, . . . , ik} and let xi1, . . . , xik be observables on }.

Then there exists a mapping hJ: @(R.J.) → } such that the following properties
are satisfied:

[J1] hJ (R.J.) 5 1}.
[J2] If A ù B 5 0⁄ , then hJ (A ø B) 5 hJ (A) 1 hJ (B).
[J3] If An ; A, then hJ (An) ; hJ (A).
[J4] hJ (Ai1 3 ??? 3 Aik) 5 xi1(Ai1) ? ??? ? xik(Aik), Ai1, . . . , Aik P @(R).

To solve some problems of probability theory on this structure, it seems
to be necessary to assume that the operation ? has the next property:

[P5] a ? 1} 5 a for all a P }.

Moreover, for the sake of the individual ergodic theorem we need to
work not only with observables, but also with the composite mapping of
observables. By using the joint observable we are able to construct some
operations with observables. For example,

1
n o

k

i51
xi :5 hj + g21, where g: R.J. → R; g(u1, . . . , uk) 5

1
k o

k

i51
ui

In the following result, by } we will denote the s-complete, weakly
s-distributive product MV algebra with properties [P1]–[P5].

Lemma 1. A mapping hJ: @(R.J.) → } satisfying [J1]–[J4] has the
following properties:

[J5] If A P @(R), then hJ ((t1, . . . , ti , . . . , tk) P R.J., ti P A) 5 xi(A).
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[J6] If J1 , J1 , N, then hJ2(p
21
J2J1(A)) 5 hJ1(A) for all A P @(R.J1.,

where pJ2J1: @(R.J2.)@(R.J1.) is the projection.

Proof. [J5] we have

hJ ({(t1, . . . , ti , . . . , tk) P R.J., ti P A})

5 hJ (R 3 ??? 3 R 3 A 3 R ??? 3 R)

5 x1(R) ? ??? ? xi21(R) ? xi(A) ? xi11(R) ? ??? ? xk(R)

5 1} ? ??? ? 1} ? xi (A) ? 1} ? ??? ? 1}

5 xi (A)

[J6] Let J1 , J2 , N, A 5 At1 3 ??? 3 Atk P @(R.J1.) and

p21
J2J1(A) 5 R 3 ??? 3 R 3 At1 3 ??? 3 Atk 3 R 3 ??? 3 R P @(R.J2.)

Then

hJ2(p
21
J2J1(A))

5 xs1(R) ? ??? ? xsi(R) ? xt1(At1) ? ??? ? xtk(Atk) ? xsj(R) ? ??? ? xsn(R)

5 1} ? ??? ? 1} ? xt1(At1) ? ??? ? xtk(Atk) ? 1} ? ??? ? 1}

5 hJ1(A)

Let us put + 5 {A P @ (R.J1.); hJ2(p
21
J2J1(A)) 5 hJ1(A)} and denote by $ the

family of all rectangles At1 3 ??? 3 Atk; At1, . . . , Atk P @(R). Evidently, +
. $. From the properties of the mapping hJ it follows that + is a q 2 s-
algebra over the ring s($) generated by $. Therefore

+ . q 2 s(s($)) 5 s(s($)) 5 @(R.J1.)

which implies

hJ2(p
21
J2J1(A)) 5 hJ1(A)

whenever A P @ (R.J1.). n

Let m be a state on }. According to the property [J6] of the mapping
hJ , we are able to define the consistency system of the probability measures
{PJ , 0⁄ Þ J , N, J is finite} defined via

PJ (A) 5 m(hJ (A)), A P @(R.J.)

It is not difficult to prove that PJ is a probability measure and it holds that

PJ1(A) 5 PJ2(p
21
J2J1(A))

where pJ2J1: R.J2. → R.J1. is the projection, J1 , J2 , N, A P @(R.J1.).
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Let RN be the set of all sequences of real numbers, and pJ : RN → R.J.

be the projection, i.e., pJ ((tn)n) 5 (tji, . . . , tjk) for J 5 { j1, . . . , jk}. By the
Kolmogorov theorem there exists exactly one probability measure P on the
measurable space (RN, s(C )) [C is the family of all cylinders, i.e., the set
of all sets of the form p21

J (A), J , N, A P @(R.J.) and s(C ) is the s-algebra
over C ] satisfying the equality

P(p21
J (A)) 5 PJ (A)

for all A P @(R.J.) and every finite J , N.
Let us define the mapping ji: RN → R; ji ((tn)n) 5 ti , i 5 1, 2, . . . .

Evidently, ji is a random variable and it holds that

Pji(A) 5 P(j21
i (A) 5 P({(tn)n; ti P A})

5 P(p21
{i}(A))

5 m(h{i}(A))

5 m(xi (A))

5 mxi(A)

We showed that for any sequence (xn)n of observables we can construct a
sequence (jn)n of random variables.

In ref. 10, 8.6, there is a modification of almost everywhere convergence
with the help of lim-sup and lim-inf. This modification gives the possibility
to solve the individual ergodic theorem on }. An important result which
refers to problems of upper and lower limits of sequences of observables on
} is the next theorem.

Theorem 2 [10, Theorem 8.6.9]. Let (xn)n be a sequence of observables,
(jn)n be a sequence of corresponding projections, and (gn)n be a sequence of
Borel measurable functions gn: Rn → R. If (gn(j1, . . . , jn))n , converges P-
almost everywhere, then (gn(x1, . . . , xn))n converges m-almost everywhere,
i.e., there exists x 5 lim sup

n→`
gn(x1, . . . , xn) and x 5 lim inf

n→`
gn(x1, . . . , xn)

and

m(lim sup
n→`

gn(x1, . . . , xn)(2`, t))

5 m(lim inf
n→`

gn(x1, . . . , xn)(2`, t))

for every t. Moreover,
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P({u P RN: lim sup
n→`

gn(j1(u), . . . , jn(u)) , t})

5 m(lim sup
n→`

gn(x1, . . . , xn)(2`, t))

for every t P R.

Definition 3. A mapping t: } → } is an m-preserving transformation
if the following conditions are satisfied:

[T1] t(1} ) 5 1}.
[T2] If a 1 b # 1, then t(a 1 b) 5 t(a) 1 t(b), a, b P }.
[T3] If an ; a, then t(an) ; t(a), an P } for all n P N.
[T4] m(t(a) ? t(b)) 5 m(a ? b), a, b P }.

3. INDIVIDUAL ERGODIC THEOREM

Theorem 4. Let x be an integrable observable on }. Let t: } → } be
an m-preserving transformation and let ti + x be bounded, i.e., there exist
observables y, z such that

y((2`, t)) # ti + x((2`, t)) # z((2`, t))

for every t P R and every i P N. Then there exists an observable x* with
the following properties:

[E1] E(x) 5 E(x*).
[E2] (1/n) (n21

i50 ti + x → x* almost everywhere in the state m.

Proof. Let xn 5 tn21 + x, n 5 1, . . . . We return to the probability space
(RN, s (C ), P) [s(C ) is the s-algebra over the family of all cylinders in RN

such that

P({(ti)i; ti P Ai , i 5 1, . . . , n}) 5 m(x1(A1) ? ??? ? xn(An))

for any Ai P @(R)]. Let T: RN → RN be the shift defined by the formula

T((tn)n) 5 (sn)n , where sn 5 tn11 for all n P N

Let A 5 {(ti)i: ti1 P A1, . . . , tik P Ak} be the cylinder. In this case

T 21(A) 5 {((ti)i; T((ti)i) P A}

5 {(ti)i; ti111 P A1, . . . , tik11 P Ak}

Therefore

P(T 21(A)) 5 m(xi111(A1) ? ??? ? xik11(Ak))

5 m(ti1(x(A1)) ? ??? ? tik(x(Ak)))
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5 m(ti121(x(A1)) ? ??? ? tik21(x(Ak)))

5 m(xi1(A1) ? ??? ? xik(Ak))

5 P(A)

We showed that T preserves the probability measure, i.e.,

P((T 21(A)) 5 P(A)

Since x1 is intergrable, the first coordinate of function j1 [defined by ji ((ti)i)
5 ti] is integrable, too. Therefore by the individual ergodic theorem [9] there
exists an integrable random variable j* such that E(j*) 5 E(j1) and

1
n o

n21

i50
j1 + Ti → j* P-almost everywhere

Of course, j1 + Ti 5 ji11 and

1
n o

n

j51
jj → j* P-almost everywhere.

Put gn(u1, . . . , un) 5 (1/n) (n
i51 ui. According to Theorem 2, the sequence

(gn(x1, . . . , xn))n 5 11
n o

n

i51
xi2

n

5 11
n o

n21

i50
ti + x2

n

converges m-almost everywhere to x* 5 lim sup
n→`

gn(x1, . . . , xn) and

P(j*21((2`, t))) 5 m (x*((2`, t)))

for every t P R. Since Pj* 5 mx* and Pj1 5 mx1 5 mx, we have

E(x) 5 E(j1) 5 E(j*) 5 E(x*) n
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